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Executive Summary

We are creating a new paradigm for building and maintaining complex real-time software systems for
the control of moving mechanical systems. This objective is being met through the simultaneous
development of both a powerful software environment and cogent motion planning and control

capabilities. Our research concentrates on three key areas:

Building an innovative, powerful real-time software framework,

Implementing new distributed control architectures for intelligent mechanical systems, and

Developing distribution architectures and new algorithms for the computationally "hard"
motion planning and direction problem.

Perhaps more importantly, we are working on the vertical integration of these technologies into a
powerful, working system. It is only through this coordinated, cooperative approach that a truly
revolutionary, usable architecture can result.

Summary of Progress

This section highlights some of our achievements for this first quarter. During this period, we have:

Provided clear semantics for resolution of multiple producer conflicts, and consumer update
rates and guarantees for the NDDS.

Started a seminar series (in conjunction with NASA Ames Research Center) on real-time
software architectures. These seminars will enable us to closely compare and contrast our
designs with other research activities.

Defined and implemented a preliminary version of the Robot Interface. including command
definitions and responses.
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Implemented the World Modeller interface defined last quarter.

Begun receiving parts for our robot hardware upgrade.

Expanded a parallel version of our Randomized Path Planner (RPP). and measured its per-
formance on a Silicon Graphics 4D/240 multi-processor machine, and on a local-area network
of UNIX-based workstations.

Made a documented Randomized Path Planner package available to other research institution
on the computer network.

Build a Sensor-Based Localization Toolkit for navigation systems.

Our research is progressing according to schedule.
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Chapter 1

Introduction

The goal of this research project is to build a new paradigm for building and maintaining complex
real-time software systems for the control of moving mechanical systems. This objective is being
met through the simultaneous development of both a powerful software environment and cogent
motion planning and control capabilities. Our research concentrates on three areas:

Building an innovative, powerful real-time software development environment,

Implementing a new distributed control architecture, and using it to deftly control and coor-
dinate real mechanical systems, and

Developing a computation distribution architecture, and using it to build on-line motion
planning and direction capabilities.

We believe that no technology can be successful unless proven experimentally. We are thus vali-
dating our research by direct application in several disparate, real-world settings.

This concurrent development of system framework, sophisticated motion planning and control
software, and real applications insures a high-quality architectural design. It will also embed, in
reusable components, fundamental new contributions to the science of intelligent motion planning
and control systems. Researchers from our three organizations, the Stanford Aerospace Robotics
Laboratory (ARL), the Stanford Computer Science Robotics Laboratory (CSRL), and Real-Time
Innovations, Inc. (RTI) have teamed to cooperate intimately and directly to achieve this goal. The
potential for advanced technology transfer represented by this cooperative, vertically-integrated
approach is unprecedented.

Framework Development This research builds on an object-oriented tool set for real-time soft
ware system programming known as ControlShell. It provides a series of execution and data inter-
change mechanisms that form a framework for building real-time applications. These mechanisnl
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CHAPTER 1. INTRODUCTION

are specifically designed to allow a component-based approach to real-time software generation and
management. By defining a set of interface specifications for inter-module interaction, ControlShell
provides a common platform that is the basis for real-time code exchange and reuse.

Our research is adding fundamental new capabilities, including network-extensible data flow control
and a graphical CASE environment.

Distributed Control Architecture This research combines the high-level motion planning
component developed by the previous effort with a deft control system for a complex multi-armed
robot. The emphasis of this effort is on building interfaces between modules that permit a complex
real-time system to run as an interconnected set of distributed modules. To drive this work, we
are building a dual-arm cooperative robot system that will be able to respond to high-level user
input, create sophisticated motion and task-level plans, and execute them in real time. The system
will be able to effect simple assemblies while reacting to changing environmental conditions. It
combines a world modelling system, real-time vision, task and path planners, an intuitive graphical
user interface, an on-line simulator, and sophisticated control algorithms.

Computation Distribution Architecture This research thrust addresses the issues arising
when computationally complex algorithms are embedded in a real-time framework. To illustrate
these issues we are considering two particular problem domains: object manipulation by autonomous
multi-arm robots and navigation of multiple autonomous mobile robots in an incompletely known
environment. These two problems raise a number of generic issues directly related to the general
theme of our research: motion planning is provably a computationally hard problem and its out-
comes, motion plans, are executed in a dynamic world where various sorts of contingencies may
exist.

The ultimate goals of our investigation are to both provide real-time controllers with on-line mo-
tion reactive planning capabilities and to build experimental robotic systems demonstrating such
capabilities. Moreover, in accomplishing this goal, we expect to identify general guidelines for
embedding a capability requiring provably complex computations into a real-time framework.



Chapter 2

ControlShell Framework
Development

This section describes our progress in developing the ControlShell framework and underlying ar-
chitecture. Two fundamental extensions to ControlShell are being pursued:

Distributed information sharing paradigms, by Gerardo Pardo-Castellote and Stan Schneider.

Graphical Computer Aided Software Engineering (CASE) environments, by Stan Schneider
and Vince Chen.

2.1 Distributed Information Sharing Paradigms: NDDS

Last quarter we completed the initial implementation of the NDDS system and resolved the multiple
producers and consumers issues. We also implemented a system that handles update rate guarantees
and deadlines in a stateless system.

This quarter, we concentrated on deploying the NDDS system in several different environments
and putting it to its initial use tests.

The Network Data-Delivery Service model has proved to be a powerful mechanism to speed the
integration. The different modules have been developed in very diverse platforms (DEC work-
stations for the Computer Science Robotics Laboratory and Sun workstations and Real-Time
VME-based computers for the Aerospace Robotics Laboratory . The Network Data-Delivery Ser-
vice has allowed us to connect these platforms without any changes to the application program. Its
functionality has allowed us to run simultaneous copies of the same software in a distributed and
transparent fashion without any software changes. For example we have been able to demonstrate
simultaneous cooperation of two people operating the same robot using identical copies of the same
graphical user-interface.
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6 CHAPTER 2. CONTROLSHELL FRAMEWORK DEVELOPMENT

2.2 ControlShell Upgrade

In this third quarter, Real-Time Innovations (RTI) released version 4.1 of ControlShell. This
version encapsulates several new features, many bug fixes, and a considerable amount of deferred
maintenance. With this release, we are well-positioned to directly address the major new work to
be done under this contract.

One of the most important new advances is a new file and build structure to allow easy support of
multiple architectures. The environment allows multi-platform support for both UNIX (Sun and
DEC) workstations, and real-time VxWorks targets of several different architectures. It can be
easily configured for local file structures, compiler usage, etc. at each site. We have also taken an
important step toward facilitating shared components between applications by providing a structure
for installing and building locally-defined components. That encourages the user community to
share components on a small scale; RTI can then take these more tested pieces of software and
incorporate them into the supported library.

ControlShell version 4.1 also supports dynamically-loaded component objects. By this, we mean
that ControlShell is able to read component instantiation requests from the system configuration
files. If a component is requested that is not already loaded onto the system, ControlShell will
locate the object and load it at run-time. This allows individual users to load and run any of the
defined components without pre-linking, or worrying about where the objects are loaded from. It
also allows users to easily over-ride the standard component objects with custom modifications.
improvements, etc. Several new components are also included, including a full interface to the
real-time vision system, standard linear estimator and controller components, etc.

A direct module selection facility was also added. This facility provides a simpler interface than
the doubly-recursive dependency-graph traversal module selection method. It should expedite the
incorporation of the graphical Data-Flow Editor, to be started on in the next quarter. The ability
to create a "configuration" of executable modules directly from the current system state is another
new facility. This allows saving and restoring an execution state quickly and easily.

Finally, this version considerably upgraded the system DFE file parser. The parser is now much
more general (so it can be used with our other file formats, such as the FSM editor) and reentrant
(so multiple copies can be running simultaneously). It is also now a two-pass parser-all the strict
data types are instanced in the first pass (CSMats, component data sets), the functional modules
are instanced in the second pass. This allows functional modules to assume that their data vectors
are already initialized at instance time.

To support this functionality, the parser interface now accepts multiple file names; the entire list
is parsed as a self-consistent unit.



Chapter 3

Distributed Control Architectures
and Interfaces

This section covers our research in software architectures, communication protocols and inter-
faces that will advance the state-of-the-art in the prototyping-development-testing cycle of high-
performance distributed control systems. These interfaces will be implemented within the frame-
work described in Chapter 2. The results of this research will be applied to the vertical integration
of planning and control and demonstrated by executing a set of challenging tasks on our two-armed
robot system.

There are three main thrusts to this research:

Development of inter-module interfaces for distributed control systems, by Gerardo Pardo-
Castellote.

Development of a control methodology capable of executing high-level commands, by Gerardo
Pardo-Castellote, Tsai-Yen Li, and Yotto Koga.

Hardware development and experimental verification, by Gerardo Pardo-Castellote and Gad
Shelef.

This quarter, we focused our effort in achieving the first experimental milestone which will not only
hand provide a test and proof-of-concept of the control and interface technologies developed so far
as well as guide our future developments. We believe that early experimental verification is key to
focusing research into the relevant real-life problems faced by distributed control systems.
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3.1 Inter-Module Interfaces

The world model and robot interface have been successful at connecting the Planner. Simulator
and Robot. We have added some functionality to the interface so that the planner can access
details in the internal robot state (such as the joint angles) that were previously hidden from it.
This is a small departure from our previous philosophy that the planner should operate only at the
object level and has been motivated by the need to resolve kinematic ambiguities (the same tool
position and orientation can be achieved with different robot configurations). This is significant
for collision avoidance purposes and for performance reasons (given more information, the planner
can use it to speed its computations). We have maintained the approach that the planner should
still command the robot at the object level, although its commands can be augmented to resolve
kinematic ambiguities. This will leave necessary freedom so that the robot can use the control
policy most appropriate to the task at hand. For example, if an object needs to be manipulated
and/or we are going to stablish a contact with the environment, we should use a control policy that
takes into account the interaction forces (for example object impedance control).

3.2 Control Methodology Development

Figure 3.1 shows the setup of our first experimental rrv.-stone. The task its simple both because of
the limitations of the current hardware (we will be installing the upgraded arms with extended reach
in January 1993) and the fact that the purpose of this experiment is to test the fundamentals of
our architecture and interfaces and we don't want to obscure these with unnecessary complication.

This quarter we have completed the final integration of all the components required for the robot
to execute the commands ...-- ived from thc robot-intprfacp and, for the world model module to
generate all the information required by both the planner and the uver-interface.

The control methodology described in previous quarterly reports has been tested in this first ex-
perimental milestone. This milestone which will be fully discussed in the next section. consisted
in the autonomous two-arm acquisition and manipulation of an object in between workspace ob-
stacles. This experiment has provided a proof-of-concept for the control mrthodo!egy and further
refinements resulted from this experimental test.

3.3 Hardware Development and Experiments

The task is to acquire an object specified by the user and deliver it to the desired destination. First
this task is executed using the simulator. The user can set up a configuration with several obstacles
in different locations of the workspace via the simulator's graphical interface shown in figure 3.2.
The simulator makes this information available to the planner using the world model interfac..
The user then selects an object and requests it to be delivered to a desired destination. Th,,
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Figure 3.1: Setup for the first experimental milestone.

This experiment consists on the acquisition and placement of a user-selected object in a user-
specified location. This requires object identification and localization using a vision system.
Generation and execution of a multi-step plan involving arm motions, object acquisition and
re-grasping.
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Figure 3.2: Graphical Simulator.

The simulator masquerades the robot and sensor systems. It produces "'simulated" sensor
information on the robot and location of the different workspace objects and receives robot
commands. The simulator executes robot commands providing the user a graphical simulation
of what the real system would do. The user can also to drag the objects and the robot around
the workspace creating different configurations in which the planner and other modules of the
system can be tested.
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Figure 3.3: Information flow for the first experimental milestone.

Two modes of operation are demonstrated in this experiment. First (figure on the left). the
robot isn't operational and the simulator masquerades the robot executing commands from
the planner and user-interface and producing world-model information. In the second mode.
the robot is now operational. Both robot and simulator execute robot-commands and produce
information on the state of the world. However, the User Interface and Planner only receive
the state information from the robot because it is of higher precedence. All information flows
using one of the three interfaces: The Task Interface (for task-commands). the Robot Interface
(for robot commands) and the World Model Interface (for state information of the robot and

different workspace objects). These interfaces are built on top of NDDS. NDDS takes care of
all this information flow and precedence-resolution. All the modules are unaware of who else is
producing or consuming the information.
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planner, using the information provided by the simulator generates a plan. This plan is composed
of multiple steps including both dual-arm and object paths, interleaved by object acquisitions and
releases (necessary for regrasping). This commands are sent to the robot using the robot interface.
The planner continuously monitors the successful completion of each task. The simulator simulates
execution of each command and provides feedback to the planner using the world model interface.
Figure 3.3 illustrates the flow of information during task execution. The robot simulator has been
developed by the Computer Science Robotics Laboratory and is described in section 4.5 of our
last quarterly report. The planner has also been developed by the Computer Science Robotics
Laboratory.

Figure 3.4: Graphical User Interface

The user specifies robot tasks with simple mouse commands. These tasks include desired goal
positions for the different objects. In addition, it provides graphical feedback to the user.

Following this, we execute the same task with the difference that the robot is now operational.
The simulator is still active but now, the world-model information coming from the robot takes
precedence'. The existence, shape and location of the robot and objects is know sensed by the
robot and distributed using the same world-model interface. The experiment proceeds as before
with the exception that now the robot executes the planner's commands. Figure 3.3 illustrates the
flow of information during task execution.

'This uses the multiple-producer conflict resolution mechanism of the Network Data-Delivery Service , already
described in the last quarterly report.
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Task specification by the user is performed using a graphical user interface. The user specifies

a task with simple point-and-click operations on the graphical display. This interface shown in

figure 3.4 also provides graphical feedback on the "state of the world", that is, location of the

arms, objects, status of the planner, robot etc. The interface has been developed at the Aerospace

Robotics Laboratory.

A videotape of this experiment showing the simulator, task specification with the user-interface

and task execution by the physical robot is attached to this report.
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Chapter 4

On-Line Computation Distribution
Architectures

This research addresses technical issues arising when computationally complex algorithms are em-
bedded in a real-time framework. To illustrate these issues we consider two particular problem do-
mains: object manipulation by autonomous multi-arm robots and navigation of multiple autonomous
mobile robots in an incompletely known environment. These two problems raise a number of generic
issues directly related to the general theme of our research: motion planning is provably a compu-
tationally hard problem and its outcomes, motion plans, are executed in a dynamic world where
various sorts of contingencies may happen.

The ultimate goal of our investigation, concerning the two problem domains mentioned above, is
to both provide real-time controllers with on-line motion reactive planning capabilities and build
experimental robotic systems demonstrating such capabilities. Moreover, in accomplishing this goal.
we expect to elaborate general guidelines for embedding a capability requiring provably complex
computations into a real-time framework.

This quarterly report covers work done towards this goal during the period of October, November.
and December 1992. During this period, our work addressed on the following areas:

1. Distribution of Path Planning, by Tsai-Yen Li.

2. Parallelization of Path Planning, by Lydia Kavraki and Tsai-Yen Li.

3. New Methods for Fast Path Planning, by Tsai-Yen Li.

4. Time-Optimal Multi-Arm Manipulation Planning, by Yotto Koga.

5. Experiments in Manipulation Planning, by Tsai-Yen Li and Yotto Koga.

6. Landmark-Based Mobile Robot Navigation, by Anthony Lazanas.
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16 CHAPTER 4. ON-LINE COMPUTATION DISTRIBUTION ARCHITECTURES

7. Mobile Robot Navigation Toolkits, by Claudio Facchinetti, Mark Yim and David Zhu.

8. Multi-Mobile Robot Simulator, by David Zhu.

Areas 1 through 5 are mainly related to the first problem domain, i.e., object manipulation by
autonomous multi-arm robots.

Areas 6 through 8 are mainly related to the second problem domain, i.e., navigation of multiple
autonomous mobile robots in an incompletely known environment.

Participating Ph.D. Students: Lydia Kavraki, Yotto Koga, Anthony Lazanas, Tsai-Yen Li, Mark
Yim.

Participating Staff: Claudio Facchinetti, Randall Wilson, David Zhu.

4.1 Distribution of Path Planning

In order to allow path planning techniques to be exploited in a real-time framework, we are ex-
ploring a new distributed software architecture to provide the "best" on-line planning service to
robot systems. In previous reports, we identified and analyzed axes along which planning can be
distributed: processors, methods, approximations, commitment over time, and time. In addition,
we have obtained encouraging preliminary results in distributing our RPP planner (Randomized
Path Planner) along some of these axes. However, it is not clear as yet how one should distribute
RPP along multiple axes to obtain minimal planning time.

Although planning distribution may be problem specific, we hope to identify some general distri-
bution invariants to develop a distribution architecture that applies to a wide range of problems.
The architecture we are currently developing is hierarchical and consists of three levels of distri-
bution. The computer agent at the first level, called the "task coordinator," takes the high-level
task description from the user interface, breaks the task into subtasks (each formulated as a path
planning problem), and sets task priorities for these problems. Problems with high priorities will
be solved before problems with low priorities (and the later will be solved while the plan generated
for the former are being executed). Hence, at this level, distribution is essentially done along the
time dimension.

The output of the first layer consists of prioritized path planning problems and computing resource
assigned to these problems according to their priorities. It is sent to the second layer, which
consists of agents called "planning coordinators." Given a path planning problem, a planning
coordinator selects appropriate planning methods and parameters to solve the problem according
to the assigned computing resource. At this level, we achieve distribution along three axes: planning
methods, problem approximations, and commitment over time.

The third layer consists of agents called "planning agents." The output of the planning coordinators
is transferred to those agents, which use the selected path planners to solve the submitted planning
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problems.

Motion plans and the status of planning agents are reported back to the planning coordinators. The
planning coordinators, in turn, report back to the task coordinator the best results that have been
obtained so far. Due to possible changes in the state of the world and possible time constraint for the
task to be accomplished, the higher-level agents must have the capability of interrupting the work
of the lower-level agents, invalidating a path, accommodating a change, and then redistributing the
new tasks accordingly.

4.2 Parallelization of Path Planning

4.2.1 Previous Work

We are investigating the parallelization of our Randomized Path Planner, RPP (see previous Quar-
terly Reports). In the previous reports, we focused our work on the most time-consuming subset
of the RPP algorithm. This subset constructs a collision-free path connecting the initial and goal
configurations of the robot by iteratively escaping local minima by concatenating random and
down (negated gradient) motions. (The other two subsets of the RPP algorithm are those which
precompute potential functions and smooth the constructed path.) We conduct our study, with
two computer architectures: a small-scale shared memory parallel multiprocessor machine and a
network of regular UNIX-based workstations. Results obtained with these two architectures were
presented in previous reports. No new significant results can be presented this quarter.

4.2.2 Parallelization of the Preprocessing Part of RPP

During this quarter, we worked on parallelizing the preprocessing part of RPP. Previous work has
shown that a significant amount of time is spent by RPP doing collision checking. However. it is
possible to reduce this time at the expense of a rather time-consuming preprocessing step. It is
this preprocessing step that we wish to parallelize in order to reduce its running time.

RPP represents the robot's configuration space (C-space) as a discrete space (grid) where each
degree of freedom of the robot can assume only a finite number of values. A precomputed and
stored C-space bitmap that explicitly represents the free part of the C-space (the O's) versus the
part that gives rise to collision with obstacles (the l's), reduces collision checking for a rigid robot
to an O(1) operation. In our simulations, we used robots that are planar sets of K rigid bodies
connected by prismatic and revolute joints. Collision checking for these robots can be done by
checking separately for collision each of their links. Hence, during the preprocessing step of RPP.
we can compute K bitmaps, each representing the C-space of one link if it were free to translate
and rotate. Once these bitmaps are available, collision checking is an O(K) operation.
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The construction of a C-space bitmap for a rigid robot can be done in a variety of ways. Latombe1

surveys many algorithms that analytically compute the C-space for robots and obstacles of fixed
geometric shapes. In the context of RPP, these methods can be used to obtain an analytic expression
of the obstacles in the C-space and then map these obstacles onto a bitmap. Methods that directly
compute bitmaps have also been proposed, 2 but they require a lot of storage. In our search for
a method that will be suitable for parallelization on a small-scale shared memory multiprocessor.
such as the SGI, we ended up formulating a new method for computing C-space bitmaps. The
proposed algorithm is inherently parallel and it is based on the Fast Fourier Transform (FFT).

Our approach derives from the observation that when the robot is a rigid object that can only
translate, the C-space is a convolution of the workspace and the robot. We compute this convolution
using the FFT algorithm. To do this we employ the convolution theorem. According to this
theorem, a convolution of the workspace bitmap and the robot bitmap can be computed by (i)
taking the Fourier Transform (FT) of the workspace bitmap and a properly shifted bitmap of
the robot, (ii) multiplying these transforms pointwise, and (iii) computing the inverse FT of their
product. We have established 3 under which conditions the FFT algorithm can be used in the above
process and how our input data can be changed to match these conditions.

Although the basic FFT-based algorithm for computing C-space bitmaps applies to translating
only robots, it can be extended to handle rotation. In the case of planar robots this is done by
discretizing the range of orientations of the robot and building a three-dimensional C-space bitmap
shce by slice. In theory, this extension also applies to the case of a robot that translates and rotates
in a three-dimensional workspace, but the dimension (6) of the C-space in that case makes the
construction of an explicit bitmap unrealistic. If the rotation is restricted to occur about a single
axis, a relatively coarse four-dimensional bitmap can be constructed as a set of three-dimensional
slices, each computed at a discretized orientation of the robot.

In the next quarter, we plan to implement the above method and experiment with it. We are also
interested in comparing its performance with existing methods for computing C-space bitmaps.

4.3 New Methods for Fast Path Planning

Efficient motion planning algorithms are the core component of any robot planning system. The
more efficient the motion planning algorithms, the more likely we can bring them on-line for real-
time robot execution. Several efficient path planning algorithms have been developed in the our
laboratory over the past few years. Among them, RPP applies to robots with many degrees of
freedom. Although experiments with RPP have often be very successful (RPP is now also used in
a variety of other organizations), we do know that there are some pathological cases where it works

1 J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, MA. 1991.

2W. Newman, M. Branicky, "Real-Time Configuration Space Transforms for Obstacle Avoidance," The Int. J. of

Rob. Research, 10(6), 1991, 650-667.
3L. Klavraki, Computation of Configuration-Space Obstacles Using the Fast Fourier Transform, Technical Report

STAN-CS-92-1425, 1992.
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poorly (some of these cases have been pointed to us by external users). Because of that, we have
started research exploring other efficient planning algorithms in high-dimensional configuration
spaces. Although the motivation for developing new algorithms was to solve the pathological cases
for RPP, the preliminary results we obtained show that these algorithms work better than RPP
in many examples. Thus, these algorithms can be used as complementary counterparts of RPP -
the axis of distribution over planning methods identified in previous quarters - to create a more
complete and efficient planning system.

We call one of the new developed planners the vector-based planner. Its algorithm uses the vector
connecting the initial and the goal configuration to guide the search. This search is bi-directional.
i.e., both the initial and goal points in the C-space may move toward each other. As in RPP. the
search consists of pairs of down motion and random motion. The main difference is that down
motions are guided by the length of the vector rather than by precomputed potential fields. If the
part of the C-obstacle along which the endpoints of the vector slides is convex, the vector converges
and shrinks to a point rapidly. This property gives an efficient way for doing local motion planning.

As in the RPP algorithm, the search in this new algorithm may get trapped into local minima.
This occurs when both endpoints of the vector are at a concave portion of a C-nbctacle boundary.
Then a random walk is performed as follows: One of the vector endpoints, called the leader, makes
a random walk, while the other endpoint, called the follower, follows the direction of motion of the
leader whenever it is possible. Because the random walk is random in every direction, after some
length of the walk, the follower may leave the C-obstacle boundary. To avoid the follower from
getting trapped into previous local minima and to detect whether the path is connected during the
random walk, we shrink the length of the vector periodically from the direction of the follower. At
the end of the random walk, as long as one endpoint moves to the convex portion of the C-obstacle
boundary, the local minimum is escaped by executing the next down motion. This algorithm
was implemented and experiments show that it is very efficient for many cluttered environments.
especially when the regions around the initial or goal configurations are cluttered by obstacles. The
bi-directional search helps the planner move out of the cluttered regions which are difficult to get
in, but easier to get out. Another advantage of this algorithm over RPP is that there is no need to
precompute potential fields. These are not cheap to produce for three-dimensional workspaces.

However, because the algorithm only uses local properties of thb C-obstacles' boundary, there still
exist pathological cases where both endpoints of the vector are trapped by highly concave portions
of C-obstacle boundary. In these case, there is no global information available that can help the
planner avoid or escape the local minima. Currently, we are working on a modified version of this
planner that uses potential fields to help escape local minima. Hopefully, this new version can be
as efficient as the pure vector-based planner, while avoiding some pathological cases.
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4.4 Time-Optimal Multi-Arm Manipulation Planning

We conduct research on time-optimal control algorithms in connection with RPP. We have imple-
mented a manipulation planner that can generate the motion of two arms such that they move
an object to a desired location in a collision-free manner. However, due to random walks utilized
in the planning, the trajectory may contain dance-like motions; consequently, it requires further
smoothing. We propose using a time-optimal control algorithm to smooth the path to one that
the robot can follow in minimum time. Furthermore, by doing so, we simultaneously obtain a path
that is optimally time parameterized, that is, we have a trajectory that can be directly sent to a
robot controller for actual execution.

Bobrow et al.4 have developed a time-optimal control algorithm for an open chain robot following a
specified path. Using this algorithm to set the cost of a given path (minimum time of travel) the path
can then be perturbed in the direction of the negative gradient of this cost to some locally minimum
solution. The resulting path is one that the robot can follow to the goal in locally minimum
time. This would be the desired smoothing of robot motions mentioned previously. However.
manipulation paths consist of closed-chain robot motions (multi-arms grasping the same object).
In the last few quarters, we have extended Bobrow et al.'s algorithm to find path-constrained time-
optimal motions of closed-chain robot systems. In addition, we have added a "no slip" constraint
to ensure that the robots do not lose their grasp of the object while executing these trajectories.

Unfortunately, in actual application these optimal-time motions may not be feasible trajectories for
the robot controller to track. The reason is as follows: In the optimization strategy reported last
quarter we take the actuator torque lmits of each arm as input and then determine the optimal-
time parameterization for the prescribed path. However, the controller strategy for multi-arm
cooperative motion may be incompatible with this optimization strategy. For example, the robots
in the ARL use "object impedance control", where the controller takes the object trajectory as the
input and then determines through a partitioning scheme the effort that each arm must exert to
track the object trajectory. The danger here is that during the execution of the optimal motion
the controller may request one or more of the actuators to exceed their capacity.

During this quarter we have solved this problem by adding consideration of the controller strategy to
the optimization algorithm. In particular, we consider the object impedance control strategy since
we ultimately want to execute these optimal motions on the ARL robots. With object impedance
control the arm dynamics are decoupled from the motion of the object through a partitioning
scheme. By adopting this scheme the optimization problem in fact reduces to the original Bobrow
et al.'s algorithm applied to each arm acting as open chain robots. We can now find optimal
time motions of closed-chain robot systems that are consistent with the object impedance control
strategy.

We are currently working to execute these optimal motions on the ARL robots and to apply
the original and modified Bobrow etal.'s algorithm as cost functions in the proposed smoothing

4See J.E. Bobrow, S. Dubowsky, and J.S. Gibson, "Time-Optimal Control of Robotic Manipulators Along Specified
Paths," The International Journal of Robotics Research, MIT Press, 4(3). 1985.
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optimization of manipulation paths.

4.5 Experiments in Manipulation Planning

Our research on distributed motion planning will yield a set of software modules running under the
ControlShell system to control actual manipulator robots available in ARL (Aerospace Robotics
Laboratory at Stanford). Our goal is to demonstrate manipulation of multiple movable objects by
two cooperating arms in an uncertain, dynamic environment.

We are working on a first integrated demonstration using a manipulation planner that we developed
over the past year.5 This planner generates synchronized paths of two arms for manipulating
movable objects. It also inserts grasp/ungrasp/regrasp operations between paths. Currently, it
runs off-line. Our first task will be to make it run on-line under ControShell, assuming a static
environment.

This investigation requires distributing the code in the ControlShell environment and develop-
ing/using various interface standards. To facilitate present and future transfer of code between our
laboratory and ARL, we are developing a simulator which will allow us to check that some major
constraints are satisfied, before actually transferring the code.

The need of developing a good software simulator emerges from the following facts:

Software simulation is safer than hardware in developing stages.

Developing software simulator is cheaper than purchasing hardware.

Software simulation is more flexible for changes in robot configuration.

Once the simulator is well developed, the setup time for experiments is less for software
simulation.

Software simulation can help predict the potential problems of hardware design.

Software simulation can verify the correctness of a planning software, and reduce the cycle
time of developing new planning algorithms.

We are building a simulator which emulates the ARL robot system in order to test the planning
module in the development stage. The simulator takes the same interface between planning and
the robot system in the ARL. It is capable of building the world model, simulating the kinematic
motion, and providing the network data delivery service (NDDS). A graphical user interface using
the MOTIF(TM) widget set under the X-Window environment has been developed to help users
conduct experiments. The simulator is also designed in a modular fashion such that the same

5This work was done under DARPA contract DAAA21-89-C0002.
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graphics functions can be reused in other displaying programs and more detailed simulation modules
like dynamics, control, and contact modules can be added in the future. Currently this simulator
is capable of simulating the kinematic motion of the ARL robots and has also been tested with the
manipulation planner developed in the last quarter.

Once the simulator has been integrated with the network delivery service package, it will be inter-
changeable with the robot system and more experiments will be conducted and reported later.

The ultimate goal of this work is to develop and demonstrate an integrated autonomous robotic
system which is capable of manipulating objects in a dynamic environment. Such an autonomous
system consists of several modules including a robot controller, a task planner, a manipulation
planner (itself combining several path planners), a simulator, and a user interface. Among these
modules, the task planner is the one that acts as the interface between the high-level graphical
user interface and the manipulation planner. The output of the manipulation planner (and the
path planners it invokes) is a motion path that is sent to the robot controller. In this quarter, we
have implemented the task-planning module and have successfully integrated it with the rest of the
system.

The task planner is triggered by user-specified high-level task instructions, such as moving an object
from an initial configuration to some goal configuration. The task planner also subscribes to the
sensory data server through the Network Data Delivery Service(NDDS). This data is converted
into the manipulation planner format and transmitted to it. When the manipulation planning is
undertaken, the task planner reports progress of the planning activities back to the user interface.
If the manipulation planner cannot find a path, the task planner also reports the possible causes
for the failure to help the user specify a new feasible task. If the manipulation planner succeeds
in finding a feasible path, the planned path is returned by the task planner to the robot controller
for actual execution. This path typically consists of several subpaths separated by grasping and
ungrasping operations. These subpaths are sent to the robot controller one at a time while the
task planner monitors their execution to ensure safe motion. If an unexpected event is detected.
the task planner reports failure or replans.

In the future, the task planner will be further integrated with the distributed planning architecture
mentioned in previous sections to provide more efficient on-line planning service.

4.6 Landmark-Based Mobile Robot Navigation

In robotics uncertainty exists at both planning and execution times. Effective planning must make
sure that enough information becomes available to the sensors during execution, to allow the robot
to correctly identify the states it traverses. It involves selecting a set of states, associating a motion
command with every state, and synthesizing functions to recognize state achievement. These three
tasks are often interdependent, causing existing planners to be either unsound, incomplete, and/or
computationally impractical. In our work during the previous quarters, we partially broke this
interdependence by assuming the existence of landmark regions in the workspace. We defined such
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regions as "islands of perfection" where position sensing and motion control are accurate. Using this
notion, we developed and implemented a sound and complete planner of polynomial complexity.

The plans created by our planner are distributed over the workspace. Each landmark region has
an associated motion command, which is executed whenever the robot enters the region. A motion
command consists of an exit region (a subset of the landmark region). a commanded direction
of motion, and a termination set of landmarks. The robot should first enter the exit region and
then attempt to follow the commanded direction of motion d (subject to some control uncertainty
modelled by an angle 0) until it enters one of the landmarks in the termination set.

During this quarter, we have studied the dependency of a plan on the control uncertainty 0. We
have shown that the structure of a reliable plan only changes at critical values of this uncertainty.
We have introduced the notion of a generalized backprojection, defined as the four-dimensional set
of backprojections for all possible values of d and 0. We have shown that this four-dimensional set
is sufficiently represented by a polynomial number of two-dimensional backprojections. Indeed, the
planner builds the backprojections in order to find out which initial-region disks are covered by it.
and which landmark disks (currently not being backprojected) are intersected by it. The answers
to these questions change only when a critical event occurs, i.e. when a ray of the backprojection
becomes tangent to a target disk, or when a spike (a left and a right ray with a common endpoint)
intersects a target disk. The number of critical events is a polynomial function of the complexity
of the workspace.

Each critical event corresponds to a critical curve in the dO-plane. These curves divide the dO-plane
into a polynomial number of cells. All the points in a cell are equivalent in the following sense:
A backprojection computed for any combination of d-O values within the cell includes the same
initial-region disks and intersects the same non-backprojected landmark disks. Thus, the plannei
need compute only one backprojection per cell.

All critical curves are straight lines with slope ±1, except those that correspond to the intersection
of a disk by a spike. The equation of this curve is complicated. We spent a significant amount
of time investigating its properties, and we proved that it has a single maximum and only one
intersection with straight lines of slope ±1. This is significant in proving that the number of cells
is polynomial.

The applications of this research can be multiple. It can be used to create a complete polynomial
planner in the case where directional uncertainty is controllable by the robot (e.g.. by a-justing
its speed, or the resources that monitor the straight-line motion). It can also be used to create
non-guaranteed plans (if no guaranteed ones exist) that maximize probability of success. In our
near-term research, we plan to implement these algorithmic results and experiment with them.
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4.7 Mobile Robot Navigation Toolkits

During this quarter, we continued our work on establishing a Software Engineering Standard to
facilitate the devlopment of the Toolkits. In establishing this standard we are taking the following
issues into consideration:

1. Sharing of common functions among the toolkits. Several toolkits may use the same. or similar
functions such as line intersections. These functions should be written in such a wa" that they
can easily be shared by many toolkits. In particular, this concerns the interaction between the
Geometry Engine Layer and the Building Blocks Layer.

2. Interaction among the different building blocks. Since several building blocks may be integrated
together to build a navigation system, the internal relationship among the different building blocks
is important.

3. Interface between the Building Block Layer and the System Developer Laver. We must provide
a convenient way to assemble the building blocks together to build a navigation system.

We have established a preliminary standard for the Toolkits. This standard will help us coordinate
the efforts of different programmers in the development team. However. we expect to refine this
standard as the development of the Toolkits progresses.

We have implemented a first-cut version of several toolkit modules that we believe to be essential
to the development of a reliable robot navigation system:

1. Robot Modeling Toolkit: This toolkit allows to set parameters describing the geometry and
capabilities (mainly sensors) of a robot. These parameters are accessible through functions by
other toolkits, which can be written independently.

2. World Modeling Toolkit: This toolkit provides functions to describe and access a geometric
model of the robot environment.

3. Path Planning Toolkit: This toolkit provides functions to generate channels and paths. These
are generated using an approximate cell decomposition method.

4. Control Toolkit: This toolkit is an interface between the other toolkits and the actuator control
functions offered by the robot. Hence, if the later are changed. only this toolkit need be modified.

5. Virtual Sensor Toolkit: This toolkit is an interface between the other toolkits and the robot'•
sensors. It fills generic paramaterized data structures. For example, a range sensor is parameteriz,,d
by its minimal range. maximal range, resolution, precision. angle of views, number of rays. etc.
Hence, the data provided by sonar proximity sensors, infra-red proximity sensors, and laser/camera
range sensors are used to fill the same data structures (but with different parameters). Other
toolkits can access these data structures as virtual sensors.

6. Vector Field Toolkit: This toolkit is a sophisticated one that allows the robot to track the flo%%
of a vector field, while monitoring a variety of conditions. The routine computing the vector field i-
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given as a parameter. Monitored conditions are stopping conditions and velocity tuning conditions.

7. Sensor-Based Localization Toolkit: This toolkit makes use of all available sensing (including
odometric sensing and environmental sensing) to locate the robot relative to its environment. It
uses fast matching techniques to correct odometric errors. This toolkit, the most involved of all
toolkits, was outlined in the previous quarterly report.

8. Map Building Toolkit: This toolkit uses environmental sensing to build and update a map of
the environment. This map is represented as a fine-resolution bitmap. Every obstacle detected by
sensors is represented as a set of points in this map.

9. Navigation Toolkit: This toolkit makes use of all the other toolkits to provide different navigation
strategies. Three strategies have been implemented so far: navigation in a channel (the most
reliable), navigation along a path (a bit less flexible), and greedy navigation using local potential
fields (the less reliable).

4.8 Simulator for Multiple Robots

We have started the implementation of the multiple robot simulator based on the set of require-
ments that we have established. Currently we have a prototype robot simulator that supports the
simulation of two robots. This simulator has the following characteristics:

1. It supports the simulation of two robots with different sensing capabilities. A client process can
request the server to create a robot with specified sensing capabilities.

2. It supports multiple client processes to control the same robot, i.e.. a client process can request
the server to connect to a robot that has already been created.

3. When creating a connection to a robot in the server, a client process can specify the priority of
the connection. A request from a client that has a higher priority connection will be processed first
by the server.

4. It supports synchronous communication between client and server.

5. It supports synchronous communication between two client processes controlling the same robot
or controlling two different robots.

We have performed several experiments concerning multiple robot navigation in an effort to test the
simulator. For example, a "robot rendez-vous" program was implemented and tested successfully
using this robot simulator.

4.9 Summary of Main Results Obtained So Far

1. Identification of several axes for distributing path planning software in an on-line architecture.
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2. A documented Randomized Path Planner package has been made available to other research
institution on the computer network. Several organizations are using it.

3. Implementation of parallel versions of RPP on a Silicon Graphics 4D/240 multiprocessor
machine and on a local-area network of UNIX-based workstations.

4. Definition of a new, FFT-based method to compute obstacles in configuration space.

5. Definition and implementation of a new path planning method (the vector-based planner) to
generate paths for robots with many degrees of freedom.

6. Design and implementation of an optimal-time motion planner for closed-loop kinematic
chains.

7. Design and implementation of a new landmark-based mobile robot planning method.

8. Definition of the layout of a software toolkit to efficiently develop new navigation systems.
Implementation of several toolkits.

9. Partial development of a powerful mobile robot simulator to facilitate the development and
debugging of mobile robot programs.

Publications So Far:
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Int. Conf. on Robotics and Automation, Nice, May 1992. pp. 2238-2245.

Y. Koga, T. Lastennet, J.C. Latombe, and T.Y. Li, "Multi-Arm Manipulation Planning," Proc. of

the 9th Int. Symp. on Automation and Robotics in Construction, Tokyo, June 1992.

A. Lazanas and J.C. Latombe, Landmark-Based Robot Navigation, Rep. No. STAN-CS-92-142S.
Dept. of Computer Science, Stanford U., May 1992.

A. Lazanas and J.C. Latombe, "Landmark-Based Robot Navigation." Proc. of the 10th Nat. Conf. on
Artificial Intelligence, AAAI-92, San Jose, July 1992, pp. 816-822.

A. Lazanas and J.C. Latombe, "Landmark-Based Robot Motion Planning," Proc. of the AAA.I Fall
Symp., Boston, MA. October 1992, pp. 98-103.

L. Kavraki, Computation of Configuration-Space Obstacles Using the Fast Fourier Transform. Tech-
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4.10 Status

Our research progresses according to schedule.



Chapter 5

Applications and Technology
Transfer

It is not possible to develop generic technology without multiple. specific applications to test and
refine the ideas and implementations. As such, we are actively seeking sites, both internally and
externally to provide the compelling test beds that will make this project succeed. These driving
applications span a variety of the most important target users: high-performance control, intelligent
machine systems, underwater vehicle command and control, and remote teleoperation. Several of
these projects will reach for new limits in advanced technology and system integration: others will
address real-world problems in operational systems.

With the reduced funding levels, we will not have the resources to support all of the originally
proposed technology evaluation sites. However, we believe these sites are crucial to the development
of ControlShell into a viable technology for "real-world" use. Thus, we have actively pursued
alternative means of supporting external sites. We have been successful in securing several new
test applications. These sites will either function with minimal support, or fund their own support.

This chapter highlights some of the activities of these projects. The highlights this quarter include:

Two NASA centers have become ControlShell sites.

A summary of the MBARI underwater vehicle activity is presented.

The currently-active ControlShell applications are:

Robotic Composite Layup, by Rick Hosey (joitit project between the ARL and the Stanford
Structures and Composites Laboratory).

Precision Machining, by The Stanford Quiet Hydraulics Laboratory.

27
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Underwater Vehicle Control, a joint project between the ARL and the Monterey Bay Aquar-
ium Research Institute. (progress report below)

Intelligent Machine Architectures, by Lockheed Missiles and Space Corporation.

Remote Teleoperation, by Space Systems Loral Corporation.

Space-based Mobile Robot Systems, by several ARL students (NASA-sponsored).

High- Performance Control of Flexible Structures, by several ARL students (AFOS R-sponsored).

Two NASA sites have selected ControlShell for their applications.

5.1 Underwater Vehicle Application

Unmanned underwater vehicles (UUV's) have proven themselves to be useful tools in the exploration
of biological, geological and chemical phenomena in the deep ocean. However. the operational utility
of current vehicles is bounded by the limited capability of current control systems. To advance the
technology of robotic vehicles used in ocean exploration, the Monterey Bay Aquarium Research
Institute (MBARI) and the Stanford Aerospace Robotics Laboratory (ARL) have begun a joint
program where students, scientists and engineers will pool their talents to tackle issues in unmanned
underwater vehicle control.

The ability to test software before full implementation on a expensive testbed vehicle cannot be
underestimated in value, not only for the opportunity to find errors which may cause expensive
failures but also for the capability of software and algorithm development independent of hardware
which is often being modified and thus inoperable. Indeed the time where all of the hardware
systems are up and running is very limited in a experimental setting. To this end we have made
built a simulator of our vehicle that is able to test fully the code that will actually control the
undersea robot.

Our simulation capability was relatively easily developed in the ControlShell environment. Control-
Shell allows us to build control and filter components whose output can be linked to the real hard-
ware or to a simulation module. Real sensor signals and simulated sensors can be mixed as input to
the control system in a similar manner. Thus we have the ability to test real hardware components
individually while running the actual algorithms which will be controlling the vehicle. For those
components which are non-operational, simulated modules are inserted in their place.

We can observe and record data using two different tools. One is StethoScope which gives us the
capability of real-time data acquisition and display of data flowing through the control system.
Another tool uses the Network Data Delivery Service (NDDS) as a means of retrieving data acros,-
the network from the real-time systems to a graphical display running on a Unix workstation.
NDDS has the tremendous advantage of providing a simple and uniform interface to the complex
problem of distributed control and data across multiple processor and architecture systems.
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For example, we are running both Sun and HP Unix workstations as our development and user
interface environment. The control of the vehicle resides onboard under the VxWorks operating
system on 680x0 single board processors in a VME cage. The communications task between pro-
cesses and data distributed across this heterogeneous environment is tremendously simplified by
using a communications package/protocol that allows data transfer at high data rates. Because it
is opaque to each module where the data is generated or being sent, attaching simulated modules
generating test data or planning modules generating vehicle commands does not need to affect the
other modules consuming or producing the associated data and commands.

We are now exploring the use of ControlShell's Finite State Machines to implement the coordination
level of our vehicle. It is at the coordination level where simple tasks that the vehicle can perform
autonomously are encoded. With these tasks, such as transit to a specified location, search for
and track a marine creature, or pick up a geological specimen, scientists will be able to direct
an underwater vehicle to perform their research. Tasks are semi-autonomous actions which are
clearly defined and can be enacted solely through sensor feedback. In the creation of a task, the
programmer is encoding knowledge and prediction of how the environment should change under
the actions being commanded. When certain conditions arise, different pre-programmed actions
will take place. The coordination of these actions and the reaction of the control system to the
changes is what need to be encoded in a straight forward manner.

ControlShell's Finite State Machine (FSM) provides the mechanism in which actions can be coor-
dinated and reaction to external events achieved. Control programmers can quickly build states
and transitions associated with stimuli that will guide the vehicle through the completion of a task.
The task-level controller of the OTTER vehicle will be mainly instantiated using FSM's. NDDS
serves as the communications layer between the various distributed modules of the vehicle system.

5.2 NASA sites

A project at NASA's Langley Research Center, led by William Doggett, has elected to utilize
ControlShell. The project focuses on end-effector development, system integration, and tools to
ease robotic space construction and planning. The system will control a Puma-configuration robot
building a representative space structure.

We are quite excited about working with this group at NASA Langley. They will provide a signif-
icant external application test for our environment. We plan to ship a version of ControlShell to
them in early January.

Another NASA lab, the intelligent mechanisms group at NASA Ames, is now planning to utilize
ControlShell for a mobile robotics project. This project's goals include studying intelligent explo-
ration algorithms and robotic control architectures. We re targeting a shipment to them in Q2
93.
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